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In this paper, we propose a new image fusion algorithm based on two-dimensional Scale-Mixing
Complex Wavelet Transform (2D-SMCWT). The fusion of the detail 2D-SMCWT coe±cients is
performed via a Bayesian Maximum a Posteriori (MAP) approach by considering a trivariate
statistical model for the local neighboring of 2D-SMCWT coe±cients. For the approximation
coe±cients, a new fusion rule based on the Principal Component Analysis (PCA) is applied.
We conduct several experiments using three di®erent groups of multimodal medical images to
evaluate the performance of the proposedmethod. The obtained results prove the superiority of the
proposed method over the state of the art fusion methods in terms of visual quality and several
commonly usedmetrics. Robustness of the proposedmethod is further tested against di®erent types
of noise. The plots of fusion metrics establish the accuracy of the proposed fusion method.

Keywords: Medical imaging; multimodal medical image fusion; scale-mixing complex wavelet
transform; MAP Bayes estimation; principal component analysis.

1. Introduction

Medical image fusion is increasingly used in diag-
nostics process due to the growing availability of
medical imaging modalities. The di®erent types of
these modalities such as Magnetic Resonance Image

(MRI), Computed Tomography (CT), Positron

Emission Tomography (PET) and Single Photon

Emission Tomography (SPECT) o®er complemen-

tary information about the human body. For ex-

ample, MR images are particularly suitable for
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examining soft tissues of the body while CT images
deliver more information about bones and hard
tissues. Similarly, T1-MR image provides detailed
information about soft tissues anatomy and fat
whereas T2-MR image gives information about
°uids and abnormal tissues such as tumours and
in°ammation. In clinical situations, the radiologists
need information from multiple imaging modalities
since a single imaging modality may not provide
enough information. Therefore, image fusion is re-
quired to combine all relevant information from the
di®erent input images into a single fused image.
Actually, dual modality imaging systems such as
MR/SPECT and MR/PET1 are successfully ap-
plied to integrate both functional and anatomical
information. SPECT/CT2 and MR/CT are used as
well for the detection of malignant tumours and
Alzheimer's disease, etc.

Several fusion techniques have been proposed in
the literature and they can be classi¯ed into three
di®erent levels depending on the stage at which the
fusion takes place, namely: pixel level, feature level
and decision level.3 Fusion at pixel-level is per-
formed directly on the values derived from the
pixels of the input images on a pixel-by-pixel basis
to generate a single fused image. Hence, pixel-based
fusion methods become the most popular fusion
techniques, while only few fusion algorithms use
feature and decision level due to their complexity
and di±culty of implementation.

The fusion process at any level should always
preserve all pertinent information presented in the
input images. Furthermore, it should be completed
without introducing any artifacts, noise, unpre-
dicted feature or loss information in the fused
image. The existing fusion algorithms can be
broadly grouped into three categories,4 viz. spatial
domain techniques, transform domain techniques,
and optimization approaches.

Spatial domain techniques such as averaging and
weighted averaging are the simplest way for image
fusion. However, these techniques extensively su®er
from undesirable side e®ect such as contrast deg-
radation. More robust methods that performed in
the substitution domain such as the Principle
Component Analysis (PCA) and Cross Bilateral
Filter (CBF) may provide better visual results and
are easy to implement. Nevertheless, these methods
do not provide any spectral information and pro-
duce spatial distortions in the fused image. There-
fore, many algorithms based on multiresolution

techniques have been developed to overcome these
limitations. Pyramid and wavelet transforms are
the most popular multiresolution approaches widely
used in image fusion. The pyramid transform5 based
fusion methods do not o®er any directional infor-
mation and su®er from blocking artifact in the re-
gion where the input images are di®erent. To
overcome these drawbacks, other pixel-level fusion
methods based on wavelet transform have been
developed. The wavelet transform6 o®ers good di-
rectional information and provides better repre-
sentation in the decomposed components. Discrete
Wavelet Transform (DWT) is one of the popular
wavelet transforms used in image fusion. It has been
shown that DWT-based fusion methods outperform
the conventional image fusion methods based on
pyramid transform in terms of a good localization in
both the spatial and the frequency domains. One of
the basic wavelet-based fusion methods was pre-
sented by Li et al.7; it includes a maximum selection
rule to determine which of the wavelet coe±cients
are able to contain the most important information.
The major drawback of this method is the use of the
same fusion rule for combining both approximation
coe±cients and detail coe±cients. Therefore, the
choice of an appropriate fusion rule should consider
the wavelet coe±cient characteristics of each band.
For instance, a DWT-based medical image fusion
algorithm has been introduced by Chiorean and
Vaida.8 It follows the maximum selection rule for
coe±cients combination in the high- frequency sub-
bands and the simple averaging rule in the low-
frequency subbands. Recently, many methods have
been introduced9 which involve wavelet-based image
fusion that integrates the region-based scheme as a
fusion rule. Lewis et al.10 have been proposed a joint
segmentation of the input images into di®erent
regions. The image fusion task is carried out by a
priority map, which is calculated using the variance,
the energy or the entropy of the wavelet coe±cients.

According to Liu and Moulin,11 a strong depen-
dency exists between wavelet coe±cients in both
inter-subband and intra-subband. For this reason,
many statistical models for image fusion have been
developed. Furthermore, choosing an appropriate
statistical model based on the properties of wavelet
coe±cients can improve the e±ciency of the
fusion process. The main di®erence between the
statistical fusion methods is the prior distribution
used to model the statistical behavior of the wavelet
coe±cients. In Ref. 12, a shrinkage approach has
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been integrated in the fusion scheme using aniso-
tropic bivariate Laplacian probability density
function (PDF). The fusion method proposed in
Ref. 13, applies Hidden Markov Models (HMMs)
and non-Gaussian prior function. Roy et al.14 pro-
pose a locally-adaptive algorithm where a multi-
variate Gaussian PDF was used. The method
proposed in Ref. 15, uses a zero-mean bivariate
Gaussian PDF over the local neighboring detail
DWT coe±cients of the input images. Moreover,
Loza et al.16 have used Generalized Gaussian (GG)
and alpha-stable prior to fuse noisy images.

The e±ciency of the wavelet-based image
fusion depends on the choice of both the wavelet
and the applied fusion rules. The real valued
wavelet transforms su®er from three major pro-
blems: shift sensitivity, lack of directionality and
no phase information.17 Complex Wavelet Trans-
forms (CWTs) has been proposed to overcome
these limitations. CWT contains important infor-
mation about the magnitude as well as the phase.18

According to Ref. 19, the magnitude of the com-
plex wavelet coe±cients provides information
about smooth regions and edges while the phase
indicates their locations. Furthermore, Dual Tree
Complex Wavelet Transform (DTCWT),20 Non-
subsampled Contourlet Transform (NSCT)21 and
Shearlet Transform (NSST)22 contain structural,
edge and salient information of the input image.
With this insight, many algorithms have been de-
veloped.23,24 However, these new schemes are time
andmemory consuming. Recently, a two-dimensional
(2D) Scale-Mixing ComplexWavelet Transform (2D-
SMCWT) has been developed.25,26 The 2D-SMCWT
preserves the energy that avoids the contrast distor-
tions. Moreover, it has a better representation of the
input images with several hierarchies of detail
coe±cients, and guarantees the orthogonality and
the inverse transform can be performed in a
straightforward manner. Therefore, a novel and ef-
¯cient pixel-level image fusion algorithm based on
2D-SMCWT for multimodal medical images is
proposed in this paper.

The innovative aspect of the present work is
twofold: ¯rst, we use a trivariate Gaussian PDF as
in Ref. 15 for the detail 2D-SMCWT coe±cients
while taking into account the mutual correlation
between the input images and the fused image.
A Bayesian MAP estimation technique has been
used to obtain the detail 2D-SMCWT coe±cients of
the fused image. Second, we propose a new fusion

rule based on the PCA to merge the approximation
2D-SMCWT coe±cients. To highlight the advan-
tage of the proposed method, a quantitative and
qualitative comparative study is established with
various well-known fusion methods. The remainder
of this paper is organized as follows: Section 2
includes a brief review and preliminaries of the 2D-
SMCWT. Section 3 explains the proposed image
fusion method. Experimental results and perfor-
mance evaluations are presented in Sec. 4. Finally,
Sec. 5 provides conclusions of our work.

2. The 2D Scale-Mixing Complex

Wavelet Transform

The Discrete ComplexWavelet Transform (DCWT)
is a complex-value of the real-valued Discrete
Wavelet Transform (DWT). Unlike the 2D-DWT,
the 2D-DCWT uses a complex mother wavelet
where the input signals are decomposed into real
and imaginary coe±cients in the transform domain
using a complex-valued ¯ltering (analytic ¯lter).
Complex wavelet coe±cients can be calculated
using Mallat's algorithm.27

Several versions of the 2D wavelet transform
have been developed,25 where the scaling and
wavelet functions can be de¯ned as

�j;kðxÞ ¼ 2ðj1þj2Þ=2�ð2j1x1 � k1; 2
j2x2 � k2Þ; ð1Þ

 d
j;kðxÞ ¼ 2

ðj1þj2Þ
2  dð2j1x1 � k1; 2

j2x2 � k2Þ; ð2Þ
where x ¼ ðx1;x2Þ 2 R2j ¼ ðj1; j2Þ 2 Z2, k ¼ ðk1;k2Þ
2 Z2 and d 2 ðH;V ;DÞ denote one of three di®erent
directional-orientations: Horizontal (H), Vertical
(V ) and Diagonal (D). The associated two-dimen-
sional scaling function �ðx; yÞ and three wavelets
 dðx; yÞ in three directions are given respectively
by

�ðx; yÞ ¼ �ðxÞ:�ðyÞ;
 Hðx; yÞ ¼ �ðxÞ: ðyÞ;
 V ðx; yÞ ¼  ðxÞ:�ðyÞ;
 Dðx; yÞ ¼  ðxÞ: ðyÞ:

ð3Þ

As it can be observed, any function f 2 L2ðR2Þ in
the multiresolution context can be expressed as

fðx; yÞ ¼
X
k

cðJ0;J0Þ;k�ðJ0;J0Þ;kðx; yÞ

þ
X
j>J0

X
k

dðJ0;jÞ;k 
H
ðJ0;jÞ;kðx; yÞ
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þ
X
j>J0

X
k

dðj;J0Þ;k 
V
ðj;J0Þ;kðx; yÞ

þ
X

j1;j2>j0

X
k

dðj1;j2Þ;k 
D
ðj1;j2Þ;kðx; yÞ: ð4Þ

which de¯nes the new scale-mixing wavelet trans-
form. The new scale-mixing approximation and
detail coe±cients are de¯ned as

AðJ0;J0Þ;k ¼ 2J0

ZZ
fðx; yÞ��ð2J0x� k1; 2

J0y� k2Þdxdy;

dH
ðJ0;jÞ;k ¼ 2ðJ0þjÞ=2

ZZ
fðx; yÞ H ð2J0x� k1; 2

jy� k2Þdxdy;

dH
ðj;J0Þ;k ¼ 2ðjþJ0Þ=2

ZZ
fðx; yÞ V ð2jx� k1; 2

J0y� k2Þdxdy;

dD
ðj1;j2Þ;k ¼ 2ðj1þj2Þ=2

ZZ
fðx; yÞ Dð2j1x� k1; 2

j2y� k2Þdxdy;

ð5Þ
where j ¼ ðj1; j2Þ, and J0 is the smaller value of the
level j which can be de¯ned as:

j ¼ ðj1; j2Þ; j1; j2 ¼ j0; . . . ; log2ðnÞ � 1:

J0 denotes the lowest resolution of the transform,
and larger values of j correspond to higher resolu-
tions, �� and � d are the complex conjugates of � and
 d, respectively.

The complex scale mixing detail coe±cients in
Eq. (5) are related to the original image pixels
through a matrix equation as in the conventional
wavelet transform. The complex scale mixing coef-
¯cients are given by

G ¼ WFWT ; ð6Þ

where W is a 2n � 2n complex scaling matrix and
WT denotes its Hermitian transpose, and F is the
2n � 2n input image (matrix) to be analyzed. The
resulting matrix in Eq. (6) is called the scale-mixing
wavelet transform of the matrix F (the input
image), which represents a 2D-implementation of
Eq. (4) for the signal fðx; yÞ sampled in a matrix
form (F ).

Figure 1 illustrates the multiresolution 2D
wavelet decomposition with four levels using a con-
ventional wavelet transform and the SMCWT. By
observing Fig. 1(b), it is seen that several hierar-
chies of subbands can be identi¯ed at each level.
Similarly to the conventional 2D wavelet transform,
the input images are partitioned into four subbands
at the ¯rst level of SMCWT, including one ap-
proximation subband and three detail subbands
which contain abundant detail information oriented
along the horizontal, vertical and diagonal direc-
tions. The approximation subband generated after
one level of decomposition represents the input of
the next level of decomposition. The process of de-
composition is iteratively repeated using Eq. (6) for
l levels, applied only to the approximation subband
of the previous level of decomposition. We note that
for a given level l, the horizontal and vertical detail
subbands are divided into multiple matrices.
Therefore, if the decomposition level is l, then the
horizontal and vertical detail subbands result in l
matrices. The diagonal detail subband and the ap-
proximation subband are generated as in the con-
ventional 2D wavelet decomposition at all l levels.

50 100 150 200 250
250

200

150

100

50

(a)

50 100 150 200 250
250

200

150

100

50

(b)

Fig. 1. Multiresolution 2D wavelet decomposition (4-levels). (a) Conventional 2D wavelet decomposition, (b) 2D Scale-mixing
wavelet decomposition.
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The construction of the wavelet matrix W is
computationally fast. Since W is orthogonal, the in-
verse transform is straightforward. Hence, the origi-
nal image can be reconstructed from the wavelet
decomposition structure as follows:

F ¼ WTGW : ð7Þ
The inherent proprieties 2D-SMCWT (symmetry,
compact support, orthogonality, etc.) make it
suitable for image fusion applications and other
dimension-reduction applications like denoising and
compression. For these reasons, we have used the
2D-SMCWT in the proposed fusion algorithm.

3. The Proposed Fusion Method

As noted above, the main step in the wavelet-based
image fusion techniques relies on the wavelet coef-
¯cients combination, and the main goal is to re-
construct an image with all useful information
contained in the wavelet coe±cients of the decom-
posed input images. In the present work, we have
processed the approximation and the detail wavelet
coe±cients separately using di®erent fusion rules
due primarily to the di®erent characteristics of the

wavelet coe±cients. The approximation coe±cients
are selected by the Max-PCA fusion rule, while the
detail coe±cients are fused using a Bayesian MAP
estimator. The overall schematic diagram illustrat-
ing our proposed fusion method is shown in Fig. 2.

It is well known that there exist two forms of
representations of complex wavelet coe±cients,
namely, the rectangular and polar forms. In the
present work, we use the polar representation since
it has better shift-invariance property than the in-
dividual real and imaginary components of the
rectangular representation. Both the magnitude
and phase components are needed to reconstruct
the fused image. In order to keep the proposed fu-
sion method computationally e±cient, only the
magnitude components of the complex wavelet
coe±cients are considered during the estimation
process, while maintaining the phase of the wavelet
coe±cients unchanged. Hence, the proposed fusion
method is e±cient and less time consuming.

3.1. Fusion of detail coe±cients

Since an image can be considered as a 2D random
signal, the detail coe±cients obtained by the

MAX fusion Rule

2D SMCWT

Detail coefficients 
Approximate 
Coefficients

Max-PCA

2D SMCWT

Detail coefficients 
Approximate 
Coefficients

Maximum Likelihood 
Estimates

Multivariate 
MAP estimator

Inverse
2D SMCWT 

Input image  
1

Fused Image

,

Input image  
2

Fig. 2. Schematic diagram of the proposed fusion algorithm.
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wavelet decomposition of the input images are also
random variables.

Let Xd
1ðKÞ and Xd

2ðKÞ denote the 2D-SMCWT
coe±cients of the input images having labels 1 and 2,
respectively, at the spatial location Kðk1; k2Þ, of
a given subband d where d 2 ðH;V ;DÞ. Also, let
xd
1ðKÞ and xd

2ðKÞ represent the observed values of
the random variables Xd

1ðKÞ and Xd
2ðKÞ, respec-

tively. The 2D-SMCWT coe±cients of the input
images in each subband are spatially nonstationary.
Therefore, the random variables of the 2D-SMCWT
coe±cients are index dependent. The use of a prior
information regarding random variables Xd

1ðKÞ and
Xd

2ðKÞmay considerably enhance the obtained fused
image. For these reasons, we have designed an e±-
cient fusion method under a statistical estimation
formulation. We have used the Maximum a Poster-
iori (MAP) estimation technique to obtain an esti-
mate ofXd

fðKÞ that denotes the random variable for
the 2D-SMCWTcoe±cients of the fused image at the
spatial location (K). The mode of the posterior den-
sity pX d

f
ðKÞjXd

1ðKÞ;Xd
2ðKÞ is used as an estimate of

Xd
fðKÞ. Thus, for a given decomposition level l, the

fused coe±cients of the detail subbands are given by

x̂ d
fðKÞ ¼ arg max

x f
d
ðkÞ

pX d
f
ðKÞjXd

1ðKÞ;X d
2ðKÞ

� ðxd
fðKÞjxd

1ðKÞ;xd
2ðKÞÞ

¼ arg max
x f
d
ðkÞ

pX d
1
ðKÞ;Xd

2
ðKÞ;Xd

f
ðKÞðxd

1ðKÞ;xd
2ðKÞ;xd

fðKÞÞ
pX d

1ðKÞ;Xd
2ðKÞðxd

1ðKÞ;xd
2ðKÞÞ

/ arg max
x f
d
ðkÞ

pX d
1ðKÞ;Xd

2ðKÞ;X d
f
ðKÞðxd

1ðKÞ;xd
2ðKÞ;xd

fðKÞÞ;

ð8Þ
where pX d

1ðKÞ;Xd
2ðKÞ;Xd

f
ðKÞðxd

1ðKÞ;xd
2ðKÞ;xd

fðKÞÞ is

the joint probability density likelihood function of

Xd
1ðKÞ;Xd

2ðKÞ;Xd
fðKÞ.

The multimodal input images to be fused are
captured from the same scene with di®erent sensors.
These input images should be correlated with
each other in the pixel domain. Intuitively, this
correlation leads to a signi¯cant level of correlation
between the local neighboring 2D-SMCWT coe±-
cients of a given subband of two input images be-
cause 2D-SMCWT is a linear transformation.28

Thus, a joint estimation of these coe±cients is re-
quired to obtain an enhanced fused image. The
multivariate PDF of the local neighboring wavelet
coe±cients of two input images has an important
role for such joint estimation. Furthermore, the
multivariate PDF is preferable since it provides a
better ¯t to the data. Using Mardia's test for mul-
tivariate normality,29,30 the locally i.i.d zero-mean
bivariate Gaussian PDF suits very well as a joint
probabilistic model of the random variables Xd

1ðKÞ
and Xd

2ðKÞ. Since the 2D-SMCWT coe±cients of
the fused image are obtained from a linear trans-
formation on the coe±cients of the input images,
then Xd

fðKÞ should correlate with Xd
1ðKÞ and

Xd
2ðKÞ. Therefore, a suitable joint PDF of Xd

1ðKÞ;
Xd

2ðKÞ and Xd
fðKÞ will be the trivariate Gaussian

PDF given by31

pX1;X2;Xf
ðx1;x2;xfÞ ¼ pXðxÞ ¼

1

2�
3
2

ffiffiffiffiffiffiffijV jp
� exp � 1

2
½ðxT �mT Þ

�

� V �1ðx�mÞ�
�
; ð9Þ

where x ¼ ½x1 x2 xf �T represents the observed sam-
ples of the random vector X ¼ ½X1 X2 Xf �T with
m ¼ ½m1 m2 mf �T with the covariance matrix

V ¼
E½ðX1 �m1ÞðX1 �m1Þ� E½ðX1 �m1ÞðX2 �m2Þ� E½ðX1 �m1ÞðXf �mfÞ�
E½ðX2 �m2ÞðX1 �m1Þ� E½ðX2 �m2ÞðX2 �m2Þ� E½ðX2 �m2ÞðXf �mfÞ�
E½ðXf �mfÞðX1 �m1Þ� E½ðXf �mfÞðX2 �m2Þ� E½ðXf �mfÞðXf �mfÞ�

2
64

3
75;

V ¼
�2
1 �12�1�2 �1f�1�f

�21�2�1 �2
2 �2f�2�f

�f1�1�f �f2�f�2 �2
f

2
64

3
75; ð10Þ

where f�f ; �1; �2g and f�ijð�1� �ij � 1Þ; i;j¼ 1;2;f;
i 6¼ jg are the variance and the correlation coe±cients,

respectively. These parameters are estimated using the
local neighboring 2D-SMCWT coe±cients.
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For a case of centered random variables, i.e.,
m1 ¼ m2 ¼ mf ¼ 0, Eq. (9) becomes

pX1;X2;Xf
ðx1;x2;xfÞ ¼ pXðxÞ ¼

1

2�
3
2

ffiffijp
V j

� exp � 1

2
½xTV �1x�

� �
;

ð11Þ
where jV j ¼ �2

1�
2
2�

2
fð1� �2

2fÞ � �12�
2
1�

2
2�

2
fð�21 �

�2f�f1Þ þ �1f�
2
1�

2
2�

2
fð�21�f2 � �f1Þ the inverse of

the covariance matrix is

V �1 ¼ 1

jV j ½Cij�; i; j ¼ 1; 2; f; ð12Þ

where: ½Cij� ¼ ½cofactormatrix�T . We de¯ne R ¼
xTV �1x, which can be written as

R¼ 1

jV j x1 x2 xf
� � C11 C12 C13

C21 C22 C23

C31 C32 C33

2
64

3
75

x1

x2

xf

2
64

3
75

¼ 1

jV j
X3
m¼1

xmCm1

X3
m¼1

xmCm2

X3
m¼1

xmCm3

" # x1

x2

xf

2
64

3
75

¼ 1

jV j
X2
m¼1

xmx1Cm1 þxfx1C31 þ
X2
m¼1

xmx2Cm2

"

þxfx2C32þ
X2
m¼1

xmxfCm3 þx2
fC33

#
:

ð13Þ
The MAP estimator x̂ d

fðKÞ is obtained by solving
the equation given by

@

@xf

½ln pX d
f
ðKÞjXd

1ðKÞ;Xd
2ðKÞðxd

fðKÞjxd
1ðKÞ; xd

2ðKÞÞ� ¼ 0:

which is equivalent to solving the likelihood
equation

@

@xf

½ln pX1;X2;Xf
ðx1; x2;xfÞ� ¼

@

@xf

½ln pXðxÞ� ¼ 0:

which becomes

x1C31 þ x2C32 þ 2xfC33 ¼
X2
m¼1

xmC3m þ 2xfC33 ¼ 0:

ð14Þ
Thus, for a given detail subband, the wavelet
coe±cients of the input images are fused using the
MAP estimator obtained by solving the above

equation:

x̂ d
f ¼ � 1

2C33

X2
m¼1

xmCm;3: ð15Þ

However, the elements of the matrix V are re-
quired to be estimated from the coe±cients of the
local neighborhood. We de¯ne a square-shaped
local neighborhood NK centered at xd

1ðKÞ, xd
2ðKÞ

and xd
fðKÞ for the spatial index K ¼ ðk1; k2Þ. In

order to estimate the parameters, the detail coef-
¯cients within the local neighborhood NðKÞ are
assumed i.i.d. Thus, we assume that the joint PDF
of the detail wavelet coe±cients is an i.i.d. zero
mean multivariate normal PDF. In this case, the
variance (�̂uu) of the wavelet coe±cients of the
individual images within a local neighborhood, and
the correlation coe±cient ð�̂uvÞ of neighboring
coe±cients of the two images at the same spatial
location are real and may be estimated using the
maximum likelihood (ML) method as29

�̂uuðKÞ ¼ max
1

M

X
e2NðKÞ

½xuðeÞ�2; 0
0
@

1
A: ð16Þ

�̂uvðKÞ ¼ max min
1

M�̂uuðKÞ�̂vvðKÞ

0
@

0
@

�
X

e2NðKÞ
xvðeÞxuðeÞ; 1

1
A;�1

1
A; ð17Þ

where u; v 2 ð1; 2; fÞ; ðu 6¼ vÞ, M is the total num-
ber of coe±cients in the local neighborhood NðKÞ.
The estimated values of �̂ffðKÞ and �̂ufðKÞ using
Eqs. (16) and (17) require an initial estimate of the
fused wavelet coe±cients. We have chosen the
maximum selection rule to obtain this initial esti-
mate given by

x̂ d
fðKÞ ¼ xd

1ðKÞ if jxd
1ðKÞj > jxd

2ðKÞj
xd
2ðKÞ if jxd

2ðKÞj > jxd
1ðKÞj

( )
: ð18Þ

In order to obtain the MAP estimates for the fused
coe±cients of the detail subband (x̂ d

fÞ, we ¯rst calcu-
late the ML estimates of the parameters �̂uu and �̂uv,
and then substitute these values in Eqs. (15) and (17).

3.2. Fusion of approximation

coe±cients

PCA32 is a mathematical tool that transforms a
large number of correlated variables into a small

A novel image fusion algorithm
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number of uncorrelated variables called principal
components. The primary goal of PCA is data re-
duction with a minimum loss of information. The
¯rst component contains the most representative
information of the original data. In order to enhance
the spatial resolution, we propose a new fusion rule
(noted Max-PCA) to obtain the approximation
coe±cients of the fused image. Therefore, the pro-
cess of fusing the approximation coe±cients using
the proposed Max-PCA fusion rule consists of the
following steps:

� The approximation coe±cients of the two input
images are arranged in two column vectors.

� Compute the empirical mean along each column
vector and then subtract it from the data of each
column. The resulting matrix has a 2 � n di-
mension, where n is the length of each column
vector.

� Find the covariance matrix L of the resulting
matrix in the previous step.

� Compute the eigenvectors ev and eigenvalues
ed of L and sort them by decreasing eigenvalue.
Note that both ev and ed are of dimension
2 � 2.

� Consider the ¯rst column of ev which corre-
sponds to larger eigenvalue to compute P1 and

P2, where: P1 ¼ evð1ÞP
ev

and P2 ¼ evð2ÞP
ev
.

Finally, Max-PCA fusion rule is performed to
combine approximation coe±cients as follows:

xA
f ¼ MaxðP1;P2Þ � ðxA

1 þ xA
2 Þ: ð19Þ

Once the detail and approximation coe±cients of
the fused image have been calculated, the inverse
2D-SMCWT is applied to provide the ¯nal fused
image.

We can summarize the fusion process of the
wavelet coe±cients as follows (see Fig. 2):

Step 1. Apply 2D-SMCWT to the input images.
Step 2. Apply the Bayesian MAP estimation to

fuse 2D-SMCWT coe±cients of the detail
subbands by considering the statistical
model as in Eq. (15).

Step 3. For approximation subbands, we apply the
proposed Max-PCA fusion rule to obtain
the approximate 2D-SMCWT coe±cients
of the fused image

Step 4. Apply the inverse 2D-SMCWT to get the
fused image.

4. Experimental Results and
Performance Evaluations

The proposed fusion method has been applied to
di®erent modalities of medical images viz. MR and
CT images. We have performed a series of tests over
three di®erent groups of multimodal images of 256
� 256 pixels with 256-level grayscale. The proposed
method is compared against eleven state-of-the-art
image fusion methods on multimodal medical ima-
ges. These methods include Morphological Pyramid
(MP) transform,5 DWT,8 Dual Tree Complex
Wavelet Transform (DTCWT),33 Shift Invariant
Discrete Wavelet Transform with Haar Wavelets
(SIDWT),34 Discrete Cosine Harmonic Wavelet
(DCHWT),35 Spinning Sharp Frequency Localized
Contourlet Transform (SFLCT SML)36 and Multi-
Scale Weighted Gradient-Based Fusion (MWGF)37

in the transform domain techniques category.
The spatial domain techniques are PCA,32 CBF,38

Bilateral Gradient-Based Sharpness Criterion
(Sharp) and Guided Image Filter (GIF)-based
method.39 We have used three levels of decomposi-
tion in all chosen transform domain fusion methods.
All experiments were conducted using MATLAB
R2009b on the same machine with Core duo CPU
2.33GHz PC, 4GB RAM.

4.1. Subjective evaluation

Figure 3 depicts the image fusion results from the
aforementioned methods applied to the ¯rst that
consists of two modalities: a CT image (Fig. 3(a))
illustrating the bone structures and a MR image
(Fig. 3(b)) showing the soft tissue structures of the
brain. The desired fused image should contain both
hard and soft tissues.

By observing Fig. 3, it can easily notice that
the results generated by PCA and GIF methods
(Figs. 3(d) and 3(k) respectively) do not include
the information contained in the ¯rst input image
(Fig. 3(a)) at the same position. Fusion results of the
MP (Fig. 3(e)), CBF (Fig. 3(j)) and sharp (Fig. 3(m))
fusion methods produce distortions and aberrant
information that do not correspond to any input
images. Moreover, we observe that the contrast of
the fused images in SFLCT SML (Fig. 3(n)) and
SIDWT (Fig. 3(h)), is lower than that of the fused
image obtained by the proposed method (Fig. 3(c)).

For more clarity, Fig. 4 shows enlarged zones of
the results shown in Fig. 3. One can easily see that
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the proposed method preserves all relevant infor-
mation from both MR and CT images and keep the
highest contrast with the fewest artifacts. However,
the fused images of DTCWT, SIDWT and DCHWT
(Figs. 4(g)–4(i)) have a relatively low contrast
with signi¯cant loss of information. The results
obtained by MP-, DWT-, and CBF-based methods
(Figs. 4(e)–4(f)) and Fig. 4(j)) produce several arti-
facts, which directly a®ect the visual quality of the
resultant fused image. One can easily conclude from
the results above that the proposed fusion method
provides the best results in terms of visual quality.

Figure 5(a) presents a Magnetic Resonance An-
giogram (MRA) image while Fig. 5(b) presents a T1
weighted MR image from the second group of
medical images. The MRA image in Fig. 5(a) has a
lower spatial resolution and contains some illness
recognized as white structures (area marked by the
ellipse) whereas T1 weighted MR image exhibits

better spatial resolution and shows clearer soft tis-
sue details. The fused images are shown in Figs. 5(c)–
5(n). From these results, one can easily observe that
the fused image of the proposed method is more
informative and has a better visual representation.
The fused images with PCA (Fig. 5(d)), CBF, GIF,
MWGF and SHARP (Figs. 5(j)–5(m)) are not able
to capture the information coming from the MR
image and provide signi¯cant deformations. Fur-
thermore, the proposed method provides higher
contrast image compared to MP (Fig. 5(e)), DWT,
DTCWT, SIDWT, DCHWT (Figs. 5(f)–5(i)) and
SFLCT SML (Fig. 5(n)) fusion methods as illus-
trated in Fig. 5. The fusion results for the last group
of medical images (T1 weighted and T2 weighted
MR images) are shown in Fig. 6. It is easy to ob-
serve that the fused image retrieved from the pro-
posed method has the same visual quality as the
fused images obtained with the previous ones.

(a) CT image (b) MR image (c) Proposed method (d) PCA method (e) MP method

(f) DWT method (g) DTCWT method (h) SIDWT method (i) DCHWT method (j) CBF method

(k) GIF method (l) MWGF method (m) Sharp method (n) SFLCT SML method

Fig. 3. Fused images for the ¯rst group of medical images.
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4.2. Objective evaluation

Fusion performance evaluation is a challenging task
because the ideal fused image is not available in
most applications. In general, there are two cate-
gories of image fusion performance evaluation:
subjective and objective assessments.40 Subjective
assessments need a visual inspection by professional
observers. Moreover, they are time consuming
and di±cult to verify. In recent years, many
researchers in the ¯eld of image fusion have pro-
posed various objective quality assessments. These
metrics are automatically and easily performed
using computer software. Therefore, beside the
above subjective study, we perform an objective
analysis of the experimental results from above
using 10 recent and widely used fusion performance
metrics, namely: Standard Deviation (STD),41 En-
tropy (EN)41 Fusion Factor (FF),17 Correlation
Coe±cient (CC),42 Mean Structural Similarity
Index Measure (MSSIM),43 Visual Information Fi-
delity (VIF),44 Naturalness Image Quality Evalua-
tor (NIQE),45 Weighted Fusion Quality Index
(QW),46 Edge-Dependent Fusion Quality Index

(QE)46 and Blind/Referenceless Image Spatial
QUality Evaluator (BRISQUE).47

We have calculated the values of the fusion
results for the same groups of the input images
(Figs. 3 and 5–6) and tabulated them in Tables 1–3,
respectively. Before discussing these tabulated
values of fusion metrics, we note that better medical
image fusion results should have the higher value of
STD, EN, FF, CC, MSSIM, VIF, QW and QE and
the lowest value of NIQE and BRISQE. From the
data values of Tables 1–3, we notice that no method
is better than the other according to the values of
each fusion metric. For this reason, we should
compare individually each method with the other
ones by considering the values of all fusion metrics.

By observing the values of the fusion metrics in
Table 1, we notice that the proposed method gives
the best values of the objective indicators in most of
the cases. The proposed method has better value of
STD, EN, VIF, BRISQUE, NIQE, QW and QE,
whereas GIF-based method has the best value of
MSSIM and FF. This indicates that the proposed
method gives better performance comparable to

(a) CT image (b) MR image (c) Proposed method (d) PCA method (e) MP method

(f) DWT method (g) DTCWT method (h) SIDWT method (i) DCHWT method (j) CBF method

(k) GIF method (l) MWGF method (m) Sharp method (n) SFLCT SML method

Fig. 4. Partial enlarged regions from fused images of the ¯rst group of medical images.
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GIF-based method. Similarly, comparing the pro-
posed method with other spatial domain fusion
methods (PCA-, CBF- and Sharp-based methods)
reveals the superiority of our method in terms of
objective evaluations. Furthermore, we compare the
proposed method with other transform domain fu-
sion methods (DWT, MP, SIDWT, DCHWT and
DTCWT). By examining the fusion metrics values
in Table 1 again, we can easily prove that the pro-
posed method gives better fusion results than the
transform-based methods. Tables 2 and 3 show the
fusion metric values from the second and the third
group of input images illustrated in Figs. 5 and 6,
respectively. As observed in Table 1, the proposed
method has obtained the best results in most cases
regarding the other transform and spatial domain
fusion methods. Although few transform methods
may present better values of fusion metrics than the
proposed method, a global comparison using other
fusion metrics is required. Moreover, it is insu±cient

to analyze separately the subjective and objective
evaluation of the fusion results, e.g. PCA-based
method (Table 1) provides better performance than
the proposed method in terms of MSSIM (0.4952)
and FF (5.2780). However, it has a poor visual
quality and su®ers from information loss (Fig. 3(d)).
Moreover, the proposed method has a higher value
of BRISQUE (33.8336) (which does not imply a
good fusion) than CBF-, MP- and Sharp-based
methods. However, these fusion methods do not
preserve all relevant information from both MR and
CT images and produce serious distortions in the
fused images.

It can be seen from Tables 2 and 3 that the
proposed method has scored highly in most cases as
compared to the existing methods in terms of vari-
ous fusion metrics. According to Table 2, GIF and
PCA-based methods have scored well in terms of
MSSIM, FF and QE, even though the fused images
provided by the same methods su®er from poor

(a) T1-MR Image (b) MRA image (c) Proposed method (d) PCA method (e) MP method

(f) DWT method (g) DTCWT method (h) SIDWT method (i) DCHWT method (j) CBF method

(k) GIF method (l) MWGF method (m) Sharp method (n) SFLCT SML method

Fig. 5. Fused images for the second group of medical images.
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contrast and lose a lot of detailed information of the
input images. The CBF and SFLCT SML-based
methods provide the best values of BRISTE
(10.3294) and NIQE (3.4414), respectively. How-
ever, they provide a low-contrast fused image as

compared to that yielded with the proposed meth-
od. Moreover, from the data values given in Table 3,
higher values of EN (6,9946) and STD (49,9128) are
achieved with MP-based method and higher FF
(7.2027) with GIF-based method. On the other

(a) T1 weighted MRI (b) T2 weighted MRI (c) Proposed method (d) PCA method (e) MP method

(f) DWT method (g) DTCWT method (h) SIDWT method (i) DCHWT methd (j) CBF method

(k) GIF method (l) MWGF method (m) Sharp method (n) SFLCT SML method

Fig. 6. Fused images for the third group of medical images.

Table 1. Performance comparison for the ¯rst group of medical images.

Methods BRISQUE MSSIM STD EN FF VIF NIQE QW QE CC

Proposed method 33.8336 0.3631 34.6367 5.9942 3.7212 0.6616 5.7048 0.8255 0.4295 0.7144
PCA 38.3177 0.4952 28.3806 5.6220 5.2781 0.2843 8.0305 0.5656 0.3533 0.5508
MP 31.5379 0.3341 29.2381 5.5794 1.9303 0.4380 6.1542 0.7279 0.3359 0.6558
DWT 39.2511 0.3222 22.0508 5.4541 2.1945 0.3313 7.2373 0.7399 0.3790 0.6953
DTCWT 36.7405 0.3229 21.4519 5.4505 2.2686 0.3422 7.7884 0.7362 0.3710 0.7006
SIDWT 34.8040 0.3296 23.0093 5.3779 2.4970 0.3895 6.5691 0.7543 0.4435 0.7041
DCHWT 41.0733 0.3460 23.3187 5.7434 1.7824 0.3558 6.5243 0.7450 0.2882 0.6761
CBF 33.1804 0.4172 30.6469 5.9157 2.8944 0.4438 6.7350 0.8414 0.4356 0.6329
GIF 36.9901 0.4979 30.0474 5.8723 4.4601 0.2936 7.8538 0.5302 0.3487 0.5281
MWGF 39.2431 0.2704 33.2277 5.0722 2.1105 0.4569 6.9381 0.7675 0.2995 0.6737
SHARP 26.5744 0.4244 30.9918 5.8097 5.5296 0.3501 11.6194 0.6977 0.3617 0.5817
SFLCT SML 35.6451 0.3200 22.5327 5.4948 1.9197 0.3539 6.8717 0.7420 0.3822 0.6912
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hand, the fused image obtained using the MP-based
method has a new pattern that does not exist in any
of the input images. Similar result is provided by
sharp-based method, which creates artifacts in the

fused image. From the above comparison, one can
easily conclude that the proposed method gives
better results than transform and spatial domain
fusion methods. Further, the visual quality of the

Table 4. Computational e±ciency for the three groups of medical images.

Execution time (s)
ET for the ¯rst
group of images

ET for the second
group of images

ET for the third
group of images

Proposed method 0.2240 0.2408 0.1708
PCA 0.0035 0.0050 0.0087
MP 0.7903 1.0857 0.5854
DWT 0.1302 0.1535 0.0716
DTCWT 0.2706 0.2888 0.1712
SIDWT 0.4830 0.4962 0.2658
DCHWT 3.7837 3.8114 1.4386
CBF 42.4435 43.3482 17.1381
GIF 0.0562 0.0558 0.0941
MWGF 3.1829 3.8904 2.7468
SHARP 14.3441 14.9402 4.2599
SFLCT SML 19.4733 21.6911 9.5029

Table 2. Performance comparison for the second group of medical images.

Methods BRISQUE MSSIM STD EN FF VIF NIQE QW QE CC

Proposed method 11.5619 0.5190 67.3466 6.0889 3.9775 0.8304 4.9656 0.8746 0.2683 0.9201
PCA 22.7536 0.5313 56.5746 5.7044 5.2143 0.7448 5.2714 0.8673 0.3456 0.9016
MP 25.1608 0.4694 54.5920 5.8559 3.9943 0.7721 4.1523 0.8735 0.3174 0.8781
DWT 18.4676 0.4797 49.0719 5.8477 3.5730 0.5953 4.2959 0.8497 0.2568 0.9027
DTCWT 20.6484 0.4842 48.3915 5.8934 3.6400 0.6072 4.2386 0.8490 0.2713 0.9079
SIDWT 17.3609 0.4917 49.8732 5.6711 3.9088 0.6800 4.6074 0.8628 0.3015 0.9075
DCHWT 16.4819 0.4745 50.4815 6.2555 3.5623 0.6693 3.5796 0.8628 0.2565 0.9108
CBF 10.3294 0.3862 55.5992 5.8597 3.9321 0.7176 4.7154 0.8803 0.2043 0.8836
GIF 23.7763 0.5344 64.6030 5.8339 7.2027 0.8516 5.1223 0.8650 0.4024 0.8838
MWGF 19.0092 0.3925 61.4758 5.8911 4.4029 0.8192 4.5859 0.8818 0.3939 0.8860
SHARP 92.1482 0.3842 58.9186 5.8815 6.4834 0.4754 18.2050 0.6507 0.0673 0.7757
SFLCT SML 19.7374 0.4809 50.4341 5.7974 3.5792 0.6818 3.4414 0.8594 0.2763 0.8962

Table 3. Performance comparison for the third group of medical images.

Methods BRISQUE MSSIM STD EN FF VIF NIQE QW QE CC

Proposed method 0.4274 0.6860 47.2334 6.9614 4.2056 0.6305 3.9784 0.8030 0.2402 0.8949
PCA 7.3229 0.6922 41.5344 6.7812 4.7965 0.5575 4.4391 0.7340 0.2026 0.9089
MP 3.8865 0.6389 49.9128 6.9946 4.0117 0.5994 4.2203 0.7762 0.2500 0.8581
DWT 7.7424 0.6543 46.3339 6.8981 3.7869 0.5798 4.2588 0.7796 0.2194 0.8774
DTCWT 4.0047 0.6892 45.3997 6.8894 3.9791 0.5962 4.2475 0.8040 0.2405 0.8889
SIDWT 1.8425 0.6915 45.4975 6.8621 4.0902 0.6188 4.4246 0.8103 0.2831 0.8898
DCHWT 2.7385 0.6874 44.1991 6.9221 4.2160 0.5612 4.0232 0.8076 0.2320 0.8973
CBF 3.2966 0.6520 45.9108 6.9212 4.7552 0.5347 3.3304 0.7951 0.2370 0.8792
GIF 8.4099 0.6111 46.1865 6.7930 7.9305 0.4371 4.1055 0.4952 0.2570 0.8360
MWGF 2.8793 0.6107 48.3071 6.7424 7.0820 0.4524 4.5740 0.7495 0.3578 0.8430
SHARP 51.7888 0.6495 46.8073 6.9288 6.4923 0.4826 11.9432 0.6216 0.1240 0.8310
SFLCT SML 0.1427 0.6806 45.6656 6.9288 3.8783 0.5793 3.8022 0.8009 0.2666 0.8831

A novel image fusion algorithm
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(a) Plot of EN fusion metric against salt and pepper noise
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(b) Plot of STD fusion metric against salt and pepper noise
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(c) Plot of EN fusion metric against zero mean Gaussian noise
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(d) Plot of STD fusion metric against zero mean Gaussian noise
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(e) Plot of EN fusion metric against speckle noise
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(f) Plot of STD fusion metric against speckle noise

Fig. 7. Plots of EN and STD against di®erent types of noise.
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fused images obtained by the proposed method are
in agreement with the objective evaluation based on
the values of di®erent fusion metrics over the three
groups of medical images.

Execution time plays an important role in med-
ical applications that require real time processing,
therefore, we evaluate here the complexity of the
proposed method compared to the considered fusion
methods in this study. As shown in Table 4, the
execution times (ETs) required to generate the
fused image using the proposed method are 0.22 s,
0.24 s and 0.17 s for the three groups of multimodal
medical images, i.e., computational time compared
to the other methods is lower. Even though, Table 4
shows that PCA- and GIF-based methods have the
best computational time, these methods show poor
results in terms of visual quality and quantitative
evaluation as noted before. Therefore, the proposed
fusion method can be considered to be highly ef-
fective since it o®ers a reasonable balance between
computational complexity on one hand, and quan-
titative and visual results on the other hand.

To demonstrate the robustness of the proposed
method against di®erent types of noise (zero mean
Gaussian, salt and pepper and speckle), we have
performed experiments by adding di®erent values of
noise variance and noise density to input images.
The experiments were carried out with di®erent
types of noise in order to evaluate the robustness of
the proposed method as compared to other wavelet-
based fusion methods including DTCWT, DCHWT,
SIDWT and DWT. A large number of tests (450
tests) are conducted through an extensive experi-
ment in terms of Entropy and Standard Deviation.
Plots of fusion metrics against di®erent levels of
Gaussian, salt and pepper and speckle noise for the
¯rst group of medical images are shown in Fig. 7. By
observing plots of STD and EN in Fig. 7, it is clear
that the fused image of the proposed method is not
a®ected by noise attacks since the value of STD and
EN indices are continuously increasing as the level of
noise increases. Furthermore, the proposed method
has the highest values of STD and EN regarding
other compared fusion methods. The plots of STD
against the three di®erent types of noise using
DTCWT-, SIDWT- and DWT-based methods show
good fusion results. However, the plots of EN against
salt and pepper noise using these methods and
speckle noise using DTCWT- and SIDWT-based
methods in Figs. 7(a) and 7(e) respectively, show the
poor robustness against noise.

5. Conclusion

In this paper, we have proposed a new and e±cient
image fusion method based on 2D-SMCWTwhich is
more compressive and preserves the energy. A tri-
variate PDF has been used to model the detail 2D-
SMCWT coe±cients of the input images and the
fused image. These coe±cients are estimated using a
Bayesian MAP estimation approach. We also pro-
posed a new fusion rule named `Max-PCA' to com-
bine the approximation 2D-SMCWT coe±cients.
The proposed fusion method has been compared
with several known methods through the experi-
ments conducted on three di®erent groups of multi-
modal medical images. The visual comparison shows
that the proposed method has signi¯cantly better
fusion performances than the other methods, as well
as with respect to the standard image fusion per-
formance measures. Furthermore, the fusion mea-
sure plots of entropy and standard deviation metrics
against Gaussian, salt and pepper and speckle noise
show that the proposed fusion method performs well
in the presence of noise and is better than the con-
sidered wavelet domain image fusion methods.
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